31 research outputs found

    Chemotherapy Induced Sensory Neuropathy Depends on Non-Linear Interactions with Cancer

    Get PDF
    For the constellation of neurological disorders known as chemotherapy induced neuropathy, mechanistic understanding, and treatment remain deficient. In project one, I leveraged a multi-scale experimental approach to provide the first evidence that chronic sensory neuropathy depends on non-linear interactions between cancer and chemotherapy. Global transcriptional profiling of dorsal root ganglia revealed amplified differential expression, notably in regulators of neuronal excitability, metabolism and inflammatory responses, all of which were unpredictable from effects observed with either chemotherapy or cancer alone. Systemic interactions between cancer and chemotherapy also determined the extent of deficits in sensory encoding in vivo and ion channel protein expression by single mechanosensory neurons, with the potassium ion channel Kv3.3 emerging as candidate mechanisms explaining sensory neuron dysfunction. The sufficiency of this novel molecular mechanism was tested in an in silico biophysical model of mechanosensory function. Finally, validated measures of sensorimotor behavior in awake behaving animals confirmed that dysfunction after chronic chemotherapy treatment is exacerbated by cancer. Notably, errors in precise fore-limb placement emerged as a novel behavioral deficit unpredicted by our previous study of chemotherapy alone. These original findings identify novel contributors to peripheral neuropathy, and emphasize the fundamental dependence of neuropathy on the systemic interaction between chemotherapy and cancer across multiple levels of biological control. In project two, I extend study to multiple classes of mechanosensory neurons that are necessary for generating the information content (population code) needed for proprioception. I first tested the hypothesis that exacerbated neuronal dysfunction is conserved across multiple classes of mechanosensory neurons. Results revealed co-suppression of specific signaling parameters across all neuronal classes. To understand the consequences of corrupt population code, I employed a long-short-term memory neural network (LSTM), a deep-learning algorithm, to test how decoding of spatiotemporal features of movement are altered after chemotherapy treatment of cancer. Results indicate that spiking activity from the population of neurons in animals with cancer, treated by chemotherapy contain significantly less information about key features of movement including, e.g. timing, magnitudes, and velocity. I then modeled the central nervous systems (CNS) capacity to compensate for this information loss. Even under optimal learning conditions, the inability to fully restore predictive power suggests that the CNS would not be able to compensate and restore full function. Our results support our proposal that lasting deficits in mobility and perception experienced by cancer survivors can originate from sensory information that is corrupted and un-interpretable by CNS neurons or networks. Collectively, I present the first evidence that chronic cancer neuropathy cannot be explained by the effects of chemotherapy alone but instead depend on non-linear interactions with cancer. This understanding is a prerequisite for designing future studies and for developing effective treatments or preventative measures.Ph.D

    Randomized, Placebo-Controlled, Double-Blind Pilot Study of D-Cycloserine in Chronic Stroke

    Get PDF
    Stroke is a leading cause of death and disability in the USA. Up to 60% of patients do not fully recover despite intensive physical therapy treatment. N-Methyl-D-aspartate receptors (NMDA-R) have been shown to play a role in synaptic plasticity when activated. D-Cycloserine promotes NMDA receptor function by binding to receptors with unoccupied glycine sites. These receptors are involved in learning and memory. We hypothesized that D-cycloserine, when combined with robotic-assisted physiotherapy (RAP), would result in greater gains compared with placebo + RAP in stroke survivors. Participants (n=14) were randomized to D-cycloserine plus RAP or placebo plus RAP. Functional, cognitive, and quality-of-life measures were used to assess recovery. There was significant improvement in grip strength of the affected hand within both groups from baseline to 3 weeks (95% confidence interval for mean change, 3.95 ± 2.96 to 4.90 ± 3.56 N for D-cycloserine and 5.72 ± 3.98 to 8.44 ± 4.90 N for control). SIS mood domain showed improvement for both groups (95% confidence interval for mean change, 72.6 ± 16.3 to 82.9 ± 10.9 for D-cycloserine and 82.9 ± 13.5 to 90.3 ± 9.9 for control). This preliminary study does not provide evidence that D-cycloserine can provide greater gains in learning compared with placebo for stroke survivors

    Diverse and Complex Muscle Spindle Afferent Firing Properties Emerge from Multiscale Muscle Mechanics

    Get PDF
    Despite decades of research, we lack a mechanistic framework capable of predicting how movement-related signals are transformed into the diversity of muscle spindle afferent firing patterns observed experimentally, particularly in naturalistic behaviors. Here, a biophysical model demonstrates that well-known firing characteristics of mammalian muscle spindle Ia afferents – including movement history dependence, and nonlinear scaling with muscle stretch velocity – emerge from first principles of muscle contractile mechanics. Further, mechanical interactions of the muscle spindle with muscle-tendon dynamics reveal how motor commands to the muscle (alpha drive) versus muscle spindle (gamma drive) can cause highly variable and complex activity during active muscle contraction and muscle stretch that defy simple explanation. Depending on the neuromechanical conditions, the muscle spindle model output appears to ‘encode’ aspects of muscle force, yank, length, stiffness, velocity, and/or acceleration, providing an extendable, multiscale, biophysical framework for understanding and predicting proprioceptive sensory signals in health and disease

    Dysregulation of Mechanosensory Circuits Coordinating the Actions of Antagonist Motor Pools Following Peripheral Nerve Injury and Muscle Reinnervation

    No full text
    Movement disorders observed following peripheral nerve injury and muscle reinnervation suggest discoordination in the activation of antagonist muscles. Although underlying mechanisms remain undecided, dysfunction in spinal reflex circuits is a reasonable candidate. Based on the well known role of reflex inhibition between agonist and antagonist muscles in normal animals, we hypothesized its reduction following muscle reinnervation, similar to that associated with other disorders exhibiting antagonist discoordination, e.g. spinal cord injury and dystonia. Experiments performed on acutely-decerebrated rats examined interactions of mechanosensory reflexes between ipsilateral muscles acting as mechanical antagonists at the ankle joint: ankle extensor, gastrocnemii (G)muscles (agonists)and ankle flexor, tibialis anterior (TA)muscle (antagonist). The force of agonist stretch reflex contraction was measured for its suppression or facilitation by concurrent conditioning stretch of the antagonist muscle. Data were compared between two groups of adult rats, an antagonist reinnervation group with TA muscle reinnervated and a control group with TA normally innervated. Results revealed a three-fold increase in reflex suppression in the antagonist reinnervation group, contrary to our predicted decrease. Reflex facilitation also increased, not only in strength, seven-fold, but also in its frequency of stochastic occurrence across stimulus trials. These observations suggest dysregulation in specific spinal reflex circuits as novel candidate origins of modified antagonist muscle coordination following peripheral nerve injury and muscle reinnervation

    Clinical Study Randomized, Placebo-Controlled, Double-Blind Pilot Study of D-Cycloserine in Chronic Stroke

    No full text
    Stroke is a leading cause of death and disability in the USA. Up to 60% of patients do not fully recover despite intensive physical therapy treatment. N-Methyl-D-aspartate receptors (NMDA-R) have been shown to play a role in synaptic plasticity when activated. D-Cycloserine promotes NMDA receptor function by binding to receptors with unoccupied glycine sites. These receptors are involved in learning and memory. We hypothesized that D-cycloserine, when combined with robotic-assisted physiotherapy (RAP), would result in greater gains compared with placebo + RAP in stroke survivors. Participants ( = 14) were randomized to Dcycloserine plus RAP or placebo plus RAP. Functional, cognitive, and quality-of-life measures were used to assess recovery. There was significant improvement in grip strength of the affected hand within both groups from baseline to 3 weeks (95% confidence interval for mean change, 3.95 ± 2.96 to 4.90 ± 3.56 N for D-cycloserine and 5.72 ± 3.98 to 8.44 ± 4.90 N for control). SIS mood domain showed improvement for both groups (95% confidence interval for mean change, 72.6 ± 16.3 to 82.9 ± 10.9 for D-cycloserine and 82.9 ± 13.5 to 90.3 ± 9.9 for control). This preliminary study does not provide evidence that D-cycloserine can provide greater gains in learning compared with placebo for stroke survivors

    Chronic Defects in Intraspinal Mechanisms of Spike Encoding by Spinal Motoneurons Following Chemotherapy

    No full text
    Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons\u27 intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients

    Chronic Defects in Intraspinal Mechanisms of Spike Encoding by Spinal Motoneurons Following Chemotherapy

    No full text
    Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons\u27 intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients

    Improving Upper Extremity Function and Quality of Life with a Tongue Driven Exoskeleton: A Pilot Study Quantifying Stroke Rehabilitation

    No full text
    Stroke is a leading cause of long-term disability around the world. Many survivors experience upper extremity (UE) impairment with few rehabilitation opportunities, secondary to a lack of voluntary muscle control. We developed a novel rehabilitation paradigm (TDS-HM) that uses a Tongue Drive System (TDS) to control a UE robotic device (Hand Mentor: HM) while engaging with an interactive user interface. In this study, six stroke survivors with moderate to severe UE impairment completed 15 two-hour sessions of TDS-HM training over five weeks. Participants were instructed to move their paretic arm, with synchronized tongue commands to track a target waveform while using visual feedback to make accurate movements. Following TDS-HM training, significant improvements in tracking performance translated into improvements in the UE portion of the Fugl-Meyer Motor Assessment, range of motion, and all subscores for the Stroke Impact Scale. Regression modeling found daily training time to be a significant predictor of decreases in tracking error, indicating the presence of a potential dose-response relationship. The results of this pilot study indicate that the TDS-HM system can elicit significant improvements in moderate to severely impaired stroke survivors. This pilot study gives preliminary insight into the volume of treatment time required to improve outcomes

    Chronic Defects in Intraspinal Mechanisms of Spike Encoding by Spinal Motoneurons Following Chemotherapy

    No full text
    Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons\u27 intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients

    Imbalanced Subthreshold Currents Following Sepsis and Chemotherapy: A Shared Mechanism Offering a New Therapeutic Target?

    No full text
    Both sepsis and treatment of cancer with chemotherapy are known to cause neurologic dysfunction. The primary defects seen in both groups of patients are neuropathy and encephalopathy; the underlying mechanisms are poorly understood. Analysis of preclinical models of these disparate conditions reveal similar defects in ion channel function contributing to peripheral neuropathy. The defects in ion channel function extend to the central nervous system where lower motoneurons are affected. In motoneurons the defect involves ion channels responsible for subthreshold currents that convert steady depolarization into repetitive firing. The inability to correctly translate depolarization into steady, repetitive firing has profound effects on motor function, and could be an important contributor to weakness and fatigue experienced by both groups of patients. The possibility that disruption of function, either instead of, or in addition to neurodegeneration, may underlie weakness and fatigue leads to a novel approach to therapy. Activation of serotonin (5HT) receptors in a rat model of sepsis restores the normal balance of subthreshold currents and normal motoneuron firing. If an imbalance of subthreshold currents also occurs in other central nervous system neurons, it could contribute to encephalopathy. We hypothesize that pharmacologically restoring the proper balance of subthreshold currents might provide effective therapy for both neuropathy and encephalopathy in patients recovering from sepsis or treatment with chemotherapy. (PsycInfo Database Record (c) 2022 APA, all rights reserved
    corecore